

Building a Billion-Scale Vector
Embeddings Dataset for Real-World ANN
Benchmarking
Mentor: Jayjeet Chakraborty
Author: Prathamesh Devadiga

Abstract

Current vector search benchmarks rely on synthetic or low-dimensional datasets (e.g.,
GloVe-25, SIFT-128), which fail to represent real-world workloads like those from
modern LLMs (e.g., OpenAI’s 3072d text-embedding-3-large). This project aims
to create the first open-source 1B-scale vector embedding dataset using Wikipedia
text processed through state-of-the-art open-source models, with three variants (1024,
4096, and 8192 dimensions). The dataset will enable realistic benchmarking of
Approximate Nearest Neighbor (ANN) algorithms and empower research in
retrieval-augmented generation (RAG) systems.

Problem Statement

● Gap: Existing ANN benchmarks (ANN-Benchmarks, BigANN) use small (≤1M
samples) or synthetic data, lacking:

○ High dimensionality (>1000d)
○ Real-world text distributions
○ Scale (>100M vectors)

● Impact: Researchers and companies currently rely on proprietary datasets,
hindering reproducibility and fair algorithm comparisons.

Project Goals

1. Generate 1 billion text embeddings from English Wikipedia using open-source
models.

2. Provide multiple embedding dimensions (1024, 4096, 8192, etc) to study
dimensionality’s impact on ANN performance.

3. Ensure deduplication, compression, and metadata tracking for usability.
4. Validate embeddings via statistical analysis and ANN benchmarks

(FAISS/HNSW).
5. Distribute the dataset efficiently via sharded cloud storage and documentation.

Methodology

1. Data Acquisition & Preprocessing

● Source: Latest English Wikipedia dump (XML) → ~6M articles.
● Tools:

○ wikimedia-dump-downloader for XML retrieval.
○ wikiextractor to strip markup and extract plaintext.

● Cleaning Pipeline:
○ Regex-based removal of non-ASCII chars, tables, citations.
○ Paragraph splitting via nltk.tokenize (1 embedding/paragraph).
○ Deduplication using MinHash + LSH (LSHForest) to remove

near-identical chunks.
● Output: ~1.1B cleaned text chunks stored in JSON Lines format.

Why MinHash and LSH?

● MinHash: A probabilistic algorithm to estimate the similarity between two sets
(example could be b/w paragraphs). It works by:

○ Hashing elements of each set (words in a paragraph).
○ Selecting the minimum hash value for each set.
○ Comparing the fraction of matching minimum hashes to estimate similarity

(Jaccard Index).
● LSH (Locality-Sensitive Hashing): Groups similar items into buckets using

hash functions. It works by:
○ Applying multiple hash functions to each MinHash signature.
○ Placing items with matching hashes into the same bucket.
○ Ensuring that similar items are likely to collide in the same bucket.

● Why Use Them?:
○ Efficiency: MinHash reduces the complexity of comparing billions of

paragraphs.
○ Scalability: LSH groups similar paragraphs for deduplication without

pairwise comparisons.
○ Accuracy: Ensures near-duplicate paragraphs (e.g., boilerplate text) are

removed, improving dataset quality.

2. Embedding Generation

Model Selection

After careful evaluation of various embedding models, I've selected
Linq-AI-Research/Linq-Embed-Mistral (subject to change as per experiments) as the
optimal model for this project based on:

- Performance: Consistently ranks in the top positions on the MTEB leaderboard for
retrieval and semantic similarity tasks
- Efficiency: Offers an excellent balance between embedding quality and computational
requirements
- Open Source: Fully open-source model available on Hugging Face, ensuring
reproducibility
- Community Adoption: Widely used in production RAG systems and retrieval
applications

With the single-model approach, we can refine our infrastructure strategy:
- Deploy optimized vLLM configurations specifically tuned
forLinq-AI-Research/Linq-Embed-Mistral.
- Implement model-specific batching strategies that maximize throughput
- Optimize memory usage patterns based on the model's specific characteristics
- Apply tailored quantization techniques appropriate for this embedding model

3. Storage & Compression

● Format: Lance (50% size reduction).
● Sharding: Split into 10,000 files (100K vectors/file) for partial downloads.
● Metadata: Track model versions, text source URLs, and processing timestamps.

4. Validation

● Statistical Tests:
○ PCA variance analysis (≥80% variance in ≤20% dimensions).
○ Cosine similarity distribution checks.

● ANN Benchmarks:
○ Recall@10 tests on FAISS-IVF, HNSW, and Annoy.
○ Query latency profiling on GPU/CPU platforms.

5. Distribution

● Hosting: AWS S3 (public bucket)+ HuggingFace
● Tooling: Python CLI for incremental downloads. (extra idea)
● Documentation: Tutorials for loading shards, reproducing results, and extending

to new models.

Timeline

Phase 1: Data Acquisition & Preprocessing (Weeks 1-3)
- Week 1:
 - Set up development environment and version control
 - Implement Wikipedia dump downloader with monitoring
 - Create initial text extraction pipeline using wikiextractor
 - Set up CI/CD for continuous testing

- Week 2:
 - Implement text cleaning pipeline with regex and NLTK
 - Build paragraph splitting and normalization logic
 - Develop and test initial MinHash implementation
 - Create metrics for data quality assessment

- Week 3:
 - Implement full LSH-based deduplication system
 - Optimize MinHash + LSH for large-scale processing
 - Set up distributed processing for cleaning pipeline
 - Validate quality metrics on sample data

Phase 2: Embedding Generation (Weeks 4-7)
- Week 4:
 - Set up vLLM infrastructure on AWS for GPU optimization
 - Implement embedding generation pipeline for Linq-AI-Research/Linq-Embed-Mistral
 - Create benchmarking suite for throughput optimization
 - Develop sharding strategy for distributed computation

- Week 5-6:
 - Scale embedding generation to full Wikipedia corpus
 - Implement efficient batch processing strategies
 - Optimize memory usage for large-scale inference
 - Develop fallback mechanisms for handling failures

- Week 7:
 - Conduct quality assessment of generated embeddings
 - Implement dimension projection techniques (PCA, random projection)
 - Create derived datasets at different dimensionalities
 - Validate quality preservation across dimension transformations

Phase 3: Storage & Multi-Purpose Adaptation (Weeks 8-10)
- Week 8:
 - Implement Lance storage system with optimized compression
 - Design unified metadata schema across original and derived embeddings
 - Create efficient shard management system
 - Develop vector quality assessment tools

- Week 9-10:
 - Implement statistical validation suite for all embedding variants
 - Create ANN benchmarking framework for different dimensions
 - Develop specialized indices for different use cases
 - Document performance characteristics across dimensions

Phase 4: Evaluation & Distribution (Weeks 11-12)
- Week 11:
 - Conduct comprehensive benchmarking across all embedding variants
 - Evaluate performance in retrieval, classification, and clustering tasks
 - Create task-specific recommendation framework
 - Develop distribution tools and documentation

- Week 12:
 - Finalize dataset packaging for HuggingFace and AWS S3
 - Complete benchmark reports for all dimensionalities
 - Create interactive tutorials and examples
 - Prepare final documentation and submission

Expected Outcomes
1. Billion-Scale Vector Embeddings Dataset
- Complete Dataset: A comprehensive collection of 1 billion text embeddings derived
from English Wikipedia, provided in three dimensionalities:
 - 1024-dimensional vectors
 - 4096-dimensional vectors
 - 8192-dimensional vectors
- Quality Assurance: Each embedding set undergoes rigorous deduplication,
normalization, and statistical validation to ensure research-grade quality.
- Metadata Enrichment: Comprehensive metadata including source text, paragraph
context, article titles, URL identifiers, and processing timestamps to enhance usability.

2. Reproducible Pipeline & Tooling
- End-to-End Processing Framework: A fully documented, modular pipeline for
Wikipedia text extraction, cleaning, and embedding generation.
- Efficient Storage System: Implementation of Lance-based storage with optimized
compression and sharding, reducing storage requirements by >50% compared to raw
formats.
- CLI Tools: User-friendly command-line tools for dataset exploration, partial
downloads, and custom embedding generation.

3. Comprehensive Benchmarking Suite
- ANN Algorithm Evaluation: Detailed performance analysis of leading vector search
algorithms (FAISS-IVF, HNSW, ScaNN) across all three dimensionalities.
- Scaling Reports: Documentation of throughput, recall, and latency characteristics at
varying index sizes (10M, 100M, 1B vectors).
- Hardware Profiling: Benchmarks across different hardware configurations (CPU,
GPU, memory constraints) to guide real-world deployment decisions.
- RAG Performance Analysis: Evaluation of retrieval quality for question-answering
tasks, demonstrating practical applications in retrieval-augmented generation systems.

4. Community Resources
- Interactive Documentation: Comprehensive guides, tutorials, and Jupyter notebooks
demonstrating dataset usage.
- Academic Paper: Submission-ready research paper documenting methodology,
statistical properties, and benchmark results.
- Extension Framework: Guidelines and tools for extending the dataset with new
embedding models or data sources.

Open Source Impact

● ANN Libraries: FAISS, HNSWlib, and ScaNN can use this dataset to improve
benchmarks.

● Research: Enables studies on high-dimensional ANN scalability and RAG
optimization.

● Sustainability: Compressed/sharded design reduces access barriers for
low-resource teams.

About Me
I am Prathamesh Devadiga, currently pursuing a Bachelor of Technology in Computer
Science Engineering at PES University, Bangalore (2022-2026). My academic focus
includes Data Structures, Algorithms, Machine Learning, Deep Learning, Operating
Systems, Big Data, and Databases

Relevant Experience

- Lead Researcher & Founder, Adhāra AI Labs: Leading research in Machine
Learning with a focus on Generative AI, Large Language Models, and
Retrieval-Augmented Generation. Leading cross-functional teams to translate research
into production applications. [https://aadhara-ai-labs.vercel.app/]

- AI Engineer Intern, IndhicAI: Contributing to customized Gen-AI workflows and
pipelines, providing technical advisory for AI readiness evaluations, and researching
ML/DL/NLP pipelines for end-to-end implementation.

- Research Intern, IIT Indore: Architected and implemented KASPER (Kernel
Adaptive Spline-based PDF Attack Recognizer), a novel deep learning framework
achieving 98.9% accuracy in PDF malware detection with robust defense against
adversarial attacks.

- Summer Intern, The Innovation Lab (formerly, Microsoft Innovation Lab):
Architected and fine-tuned a Mistral 7B model to create a multi-agent system
comprising a code optimizer, reviewer, and test case writer, significantly enhancing
automation and efficiency in code assessment. Achieved high evaluation scores
(CodeBLEU: 80) for code review and generation, demonstrating effective AI-driven code
analysis and optimization.

https://aadhara-ai-labs.vercel.app/

Relevant Projects

- Medical RAG: Developed a Retrieval-Augmented Generation (RAG) application for
querying medical documents using vector search and semantic retrieval techniques with
optimized embedding models.

- PyraFuseNet: Designed a dual-path network architecture for resource-constrained
vision applications, achieving state-of-the-art accuracy with 55% fewer computations
compared to ResNet-18 (accepted at ICIAI NTU Singapore).

- CoDSPy: Built an AI-powered code optimization system using DSPy and Gradio,
implementing Chain-of-Thought and ReAct reasoning techniques for comprehensive
code optimization.

- E-Commerce Analytics: Developed a real-time data processing system using
Apache Flink to handle large-scale streaming data with PostgreSQL and Elasticsearch
integration.

Technical Skills Relevant to This Project

- Languages & Libraries: Python, Go, SQL, Bash, PyTorch, Hugging Face,
LangChain, LlamaIndex, Apache Spark, vLLM, Lance and DataSketch.

- Data Processing: Apache Spark, Kafka, and large-scale data pipelines

- Cloud & Infrastructure: AWS, Docker, and Kubernetes for scalable deployments

- Research Experience: Published paper at ICIAI NTU Singapore and under-review
paper at IJCNN, showing expertise in computational efficiency and architecture
optimization relevant to large-scale vector processing

Why I'm Ideal for This Project

My combined experience in deep learning research, vector embeddings work with RAG
systems, and large-scale data processing makes me well-equipped to tackle the
challenges of creating a billion-scale embedding dataset. I have hands-on experience
with the exact embedding models proposed in this project, and my background in
distributed systems will be crucial for the high-performance computing aspects of the
work. As an active contributor to open-source AI projects and participant in the Oxford
Machine Learning School 2024 and AWS AI-ML Scholar Program, I bring both technical
expertise and a collaborative approach to open science that aligns perfectly with the
goals of this GSoC project.

	Building a Billion-Scale Vector Embeddings Dataset for Real-World ANN Benchmarking
	Abstract
	Problem Statement
	
	Project Goals
	
	
	
	
	
	
	
	
	
	
	
	
	Methodology
	1. Data Acquisition & Preprocessing
	Why MinHash and LSH?

	
	
	2. Embedding Generation
	3. Storage & Compression
	4. Validation
	5. Distribution

	Expected Outcomes
	Open Source Impact
	About Me

